The Banach Algebra of Bounded Linear Operators

نویسنده

  • Yasunari Shidama
چکیده

The papers [21], [8], [23], [25], [24], [5], [7], [6], [19], [4], [1], [2], [18], [10], [22], [13], [3], [20], [16], [15], [9], [12], [11], [14], and [17] provide the terminology and notation for this paper. Let X be a non empty set and let f , g be elements of X . Then g · f is an element of X . One can prove the following propositions: (1) Let X, Y , Z be real linear spaces, f be a linear operator from X into Y , and g be a linear operator from Y into Z. Then g · f is a linear operator from X into Z. (2) Let X, Y , Z be real normed spaces, f be a bounded linear operator from X into Y , and g be a bounded linear operator from Y into Z. Then (i) g · f is a bounded linear operator from X into Z, and (ii) for every vector x of X holds ‖(g ·f)(x)‖ ¬ (BdLinOpsNorm(Y, Z))(g) · (BdLinOpsNorm(X,Y ))(f) · ‖x‖ and (BdLinOpsNorm(X, Z))(g · f) ¬ (BdLinOpsNorm(Y, Z))(g) · (BdLinOpsNorm(X, Y ))(f). Let X be a real normed space and let f , g be bounded linear operators from X into X. Then g · f is a bounded linear operator from X into X. Let X be a real normed space and let f , g be elements of BdLinOps(X,X). The functor f+g yields an element of BdLinOps(X,X) and is defined as follows:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

Stability of essential spectra of bounded linear operators

In this paper‎, ‎we show the stability of Gustafson‎, ‎Weidmann‎, ‎Kato‎, ‎Wolf‎, ‎Schechter and Browder essential spectrum of bounded linear operators on Banach spaces which remain invariant under additive perturbations‎ ‎belonging to a broad classes of operators $U$ such $gamma(U^m)

متن کامل

ON FELBIN’S-TYPE FUZZY NORMED LINEAR SPACES AND FUZZY BOUNDED OPERATORS

In this note, we aim to present some properties of the space of all weakly fuzzy bounded linear operators, with the Bag and Samanta’s operator norm on Felbin’s-type fuzzy normed spaces. In particular, the completeness of this space is studied. By some counterexamples, it is shown that the inverse mapping theorem and the Banach-Steinhaus’s theorem, are not valid for this fuzzy setting. Also...

متن کامل

Lie higher derivations on $B(X)$

Let $X$ be a Banach space of $dim X > 2$ and $B(X)$ be the space of bounded linear operators on X. If $L : B(X)to B(X)$ be a Lie higher derivation on $B(X)$, then there exists an additive higher derivation $D$ and a linear map $tau : B(X)to FI$ vanishing at commutators $[A, B]$ for all $A, Bin B(X)$ such that $L = D + tau$.

متن کامل

Hereditary properties of amenability modulo an ideal of Banach algebras

In this paper we investigate some hereditary properties of amenability modulo an ideal of Banach algebras. We show that if $(e_alpha)_alpha$ is a bounded approximate identity modulo I of a Banach algebra A and X is a neo-unital modulo I, then $(e_alpha)_alpha$ is a bounded approximate identity for X. Moreover we show that amenability modulo an ideal of a Banach algebra A can be only considered ...

متن کامل

Linear operators of Banach spaces with range in Lipschitz algebras

In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007